M8

New Management Concepts in the Energy Market

Delivery Contracting

Performance Contracting

Energy Service Company - ESCO

Content

- 1. // Energy Service Models
 - 1.1. The Question
 - 1.2. Energy Management Process
 - 1.3. What is Energy Service?
 - 1.4. Types of Energy Service Contracts
 - 1.5. Contracting a Customised Service Package
 - 1.6. Business Models
 - 1.7. Advantages of Contract Models
- 2. // Example of Energy Service Models
 - 2.1. Refurbishment of Street Lighting
 - 2.2. Saving Potentials in Public Buildings "Energy Saving Partnership" Berlin
 - 2.3. Energy Services opportunities, risks and success criteria
 - 2.4. Conclusions and Recommendations

2 M6_ENERGY DISTRIBUTION: DISTRICT HEATING AND COOLING Urban Planners with Renewable Energy Skills

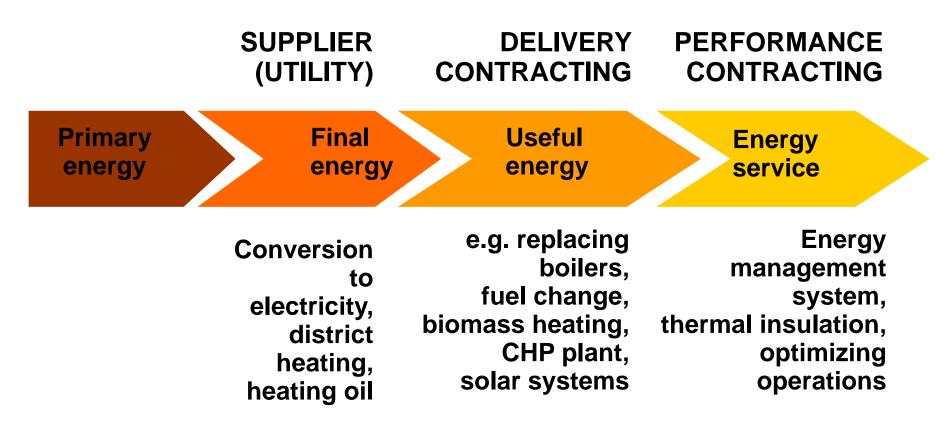
- 3. // Energy Centres as Partners3.1. Actors
 - 3.2. Tasks of Energy Agencies

Energy Service Models The Question:

Can we simultaneously improve energy efficiency and economy of buildings?

- → without (or only little) own investment capital ?
- ➔ with guaranteed total cost or guaranteed savings ?
- \rightarrow with innovative technologies ?
- \rightarrow with individually compiled services

Energy Service Models
 Energy Management Process


Energy Services / Third Party Financing as an Instrument in Municipal Energy Policy

- 1. Why energy services?
- 2. What exactly is an energy service?
- 3. Some Good Practice:
 - Small Community Building Pool, Kichbach, Austria
 - Refurbishment of Street Lighting: City of Laa, Austria
 - > 300 public buildings in Berlin: "Energy Saving Partnership" (ESP), Berlin, Germany
 - Success criteria and recommendations

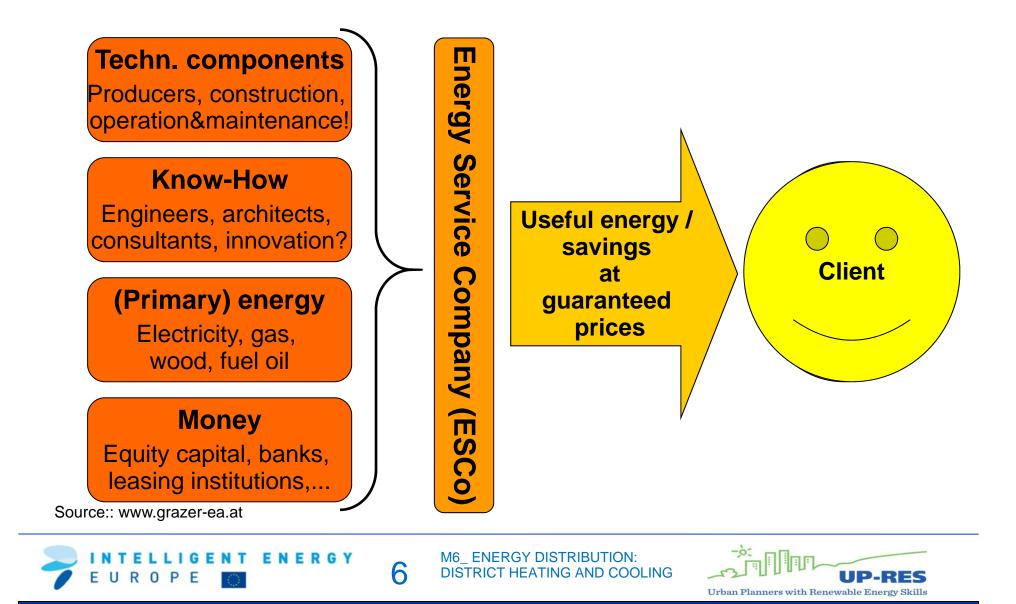
Source: Boris Papousek, www.grazer-ea.at

- 1. Energy Service Models
- 1.2. Energy Management Process

M6 ENERGY DISTRIBUTION:

DISTRICT HEATING AND COOLING

Source: Boris Papousek, www.grazer-ea.at


UROP

NERGY

5

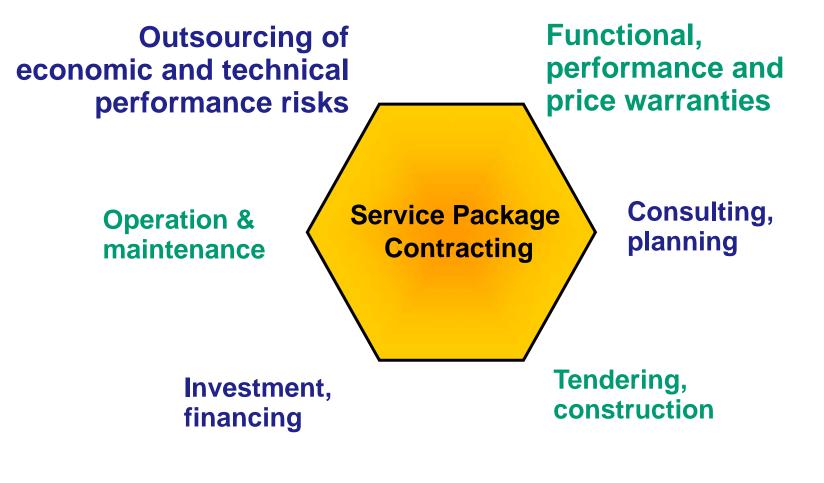
1.3. What is Energy Service?

1.4. Types of Energy Service Contracts

Delivery Contracting

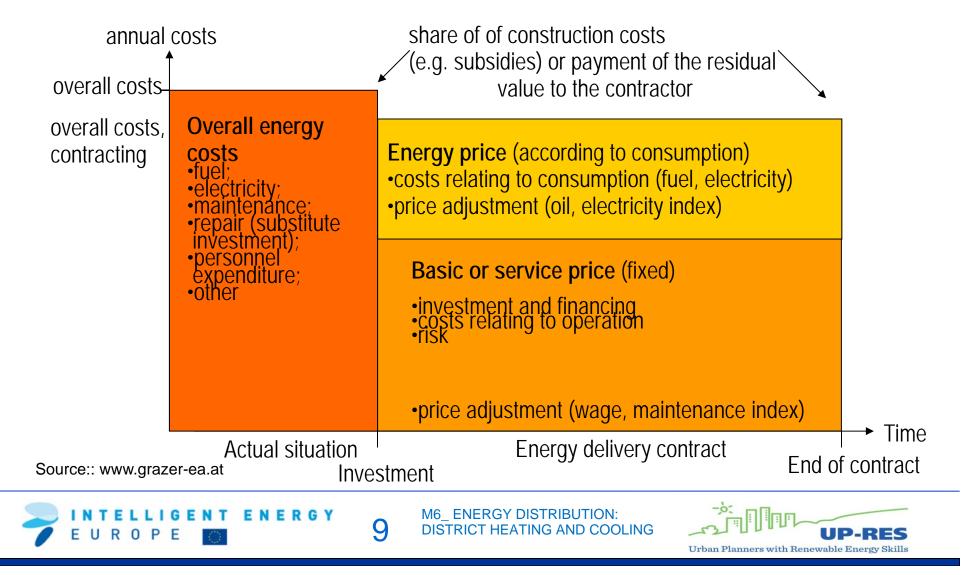
- Energy service company (ESCo) designs, constructs, operates and finances the energy supply facilities
- ESCo is responsible for purchasing of fuels (gas, ...)
- ESCo delivers useful energy (heat, electricity, compressed air) with guaranteed prices (all inclusive)
- Payments depend on actual consumption

Energy Performance Contracting


- ESCo designs, constructs, operates and finances energy saving measures in the building
- ESCo delivers energy services (tempered rooms, illuminated work areas, air exchange etc.) at fixed prices (Contracting - rate)
- ESCO guarantees max. energy consumption/cost and is financially responsible for deviations (bonusmalus)

Source:: www.grazer-ea.at

1.5. Contracting - a Customized Service Package



Source:: www.grazer-ea.at

- 1. Energy Service Models
- 1.6. Business Models (1/2)

Delivery Contracting

1.6. Business Models (2/2)

Performance Contracting contribution to building costs (e.g. subsidies) or payment of the residual Annual costs								
Present costs = baseline	Overall energy costs fuel; electricity;	Payment to ESCo for • pre-financing the investment • increased comfort + added value (NEBs) • maintenance and repair	Financial advantage for facility owner					
Energy costs after – refurbishment	maintenance; repair (substitute investment); personnel expenditure; other	 taking over risks Overall energy costs (new) Accounting adjustments (yearly) energy price (reference prices fro - climate (outer temperature by # o - changes in utilization of facility 	→Time					
Actual Saving EPC contract contract Service life of the investment investment ends								
VIDENT ELLIGENT ENERGY EUROPE								

1.7. Advantages of Contracting Models (Client Perspective)

- Saving investment costs through third-party financing and (part-) repayment from savings;
- Eliminating deficiencies and increasing the value and comfort of the building;
- ✓ Shifting technical and economical risks to the ESCo;
- ✓ Warranted savings and energy prices;
- \checkmark Focusing on the key business;
- ✓ One contact person for all matters (one face to the customer);
- ✓ Long-term increase in the revenue from the property

The objective is to create a win-win-win situation for all parties involved: financial advantage for supplier and consumer, while the environment benefits too.

Source:: www.grazer-ea.at

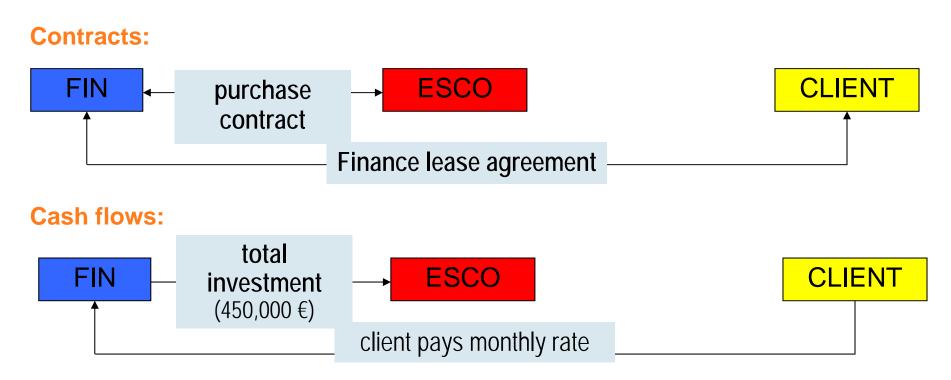
2.1. Refurbishment of Street Lighting (1/3)

- Total investment: 450,000 € (excl. VAT)
- The refurbishment measures included:
- Some 167 light points in the main streets, including masts, digging, wiring and switching units.
- Auxiliary services like removing of old installations, assembling of new street lights, protective earthing,
- Some 57 lamp posts are equipped with illuminated advertisement boards (size A0) to generate an income to the city

Source:: www.grazer-ea.at

2.1. Refurbishment of Street Lighting (2/3)

- Financer (FIN) and customer (CUST) have concluded a financing lease agreement. The investment is repaid by the city over a contract period of 15 years.
- The new street lighting is planned and built by an ESCO by order of FIN (purchase contract).
 There is no direct contract relationship between ESCO and CLIENT.
- By renting out the advertising boards on the lamp posts, the city generates an additional income.
- Also, a part of the investment is VAT deductible by a contractual differentiation between "sovereign community tasks" and "income from rent and lease". This accrues to about 5 % (21,000 €) of the investment.


Source:: www.grazer-ea.at

2.1. Refurbishment of Street Lighting (3/3)

Innovative aspect:

 ✓ contractual differentiation between sovereign community tasks and income from rent and lease ⇒ Cut down of the investment and additional income from renting for the community.
 Source:: www.grazer-ea.at

2.2. Savings Potential in Public Buildings – "Energy Saving Partnership" Berlin

	Pool 9 F'hain	Pool 10 TFH	Pool 11 Steglitz/Z'dorf	Pool 12 BBB	Contracts in total
Number of properties	30	5	41	11	309
Cost baseline (Euro)	1 090 529 €	928 165 €	1 285 102 €	4 871 293 €	24 523 174 €
ESCo	MVV Energie / WFM	SFW	SFW	Landis & Staefa	
Contract term	10 years	10 years	12 years	10 years	
Initial saving invest. (Euro)	939 243 €	552 195 €	920 325 €	7 925 683 €	23 210 183 €
Guarantied savings (%)	19,67 %	22,50 %	22,00 %	33,54 %	22,90 %
Guarantied savings client (%)	3,46 %	4,50 %	2,42 %	6,71 %	
Guarantied savings client (Euro)	37 753 €	41 767 €	31 099 €	326 766 €	1 652 173 €

Source: Berlin Energy Agency 2002

Source:: www.grazer-ea.at

M6_ ENERGY DISTRIBUTION: DISTRICT HEATING AND COOLING

15

2.3. Energy services - opportunities, risks and success criteria

Decision criteria:	In house	Energy Service	
Investment costs	100 %	0 – 100 %	
Economic and technical risks	Owner	Contractor	
Optimal maintenance of facility	only with a high owner commitment	Contractor's own interest	
Performance warranties (e.g. maximum consumption, efficiency)	No	Yes	
Functional guarantees	only warranty period	over total contract period	
Cost limits (eg investment, prices)	No	Yes	
Long-term contractual obligation	No	Yes	
Project co-ordination / know-how	building owner + engineer	Consultant + ESCO	
Service package / outsourcing	No	Yes	
Size of the building / facility	any	Floorspace > 2,000 m ² Energy costs > 20,000 €/a	
Source:: www.grazer-ea.at Life cycle costs	usually higher	usually lower	
VINTELLIGENT ENERGY	M6_ ENERGY DISTRIBUTION: DISTRICT HEATING AND COOLING	John UP-RES	

Urban Planners with Renewable Energy Skills

2.4. Conclusions and Recommendations

- Energy services delivered by ESCos are a well proven instrument to succesfully implement energy conservation measures.
 We recommend to publicly call for tenders and compare offers to "in house" solutions.
- Project development and implementation requires a lot of effort and experience (functional tendering, awarding of contract, model contracts, ...).
 => To support the process, we recommend co-operation with an experienced consultant (eg energy agencies)
- 3. The European Community supports the energy service approach, eg:
 - ⇒ The energy end-use efficiency and energy service directive will (hopefully) come,
 - ⇒ www. Eurocontract.net supports market implementation in 9 European member states.
- ⇒ Could your buildings profit from Energy Services?

Source:: www.grazer-ea.at

3. Energy Centers as Partners

3.1. Actors

Local & regional Energy Agencies

- Best knowledge about local needs and conditions
- Influence on local energy policy
 & decision-making
- Better opportunities to implement change at local level
- => 380 Energy Agencies in Europe.

Source:: www.grazer-ea.at

3. Energy Centers as Partners

3.2. Tasks of Energy Centers

- Raise competence & increase knowledge
- Build networks and contacts
- "Learn from each other" share experiences
- Think Global, Act Local
- Prioritised areas:
 - Energy efficiency
 - Renewable energies (sustainable use of energy)
 - Transport and mobility
- Key Themes
 - Buildings
 - Education

The UP-RES Consortium

Contact institutions for this module: Aalto University

• Finland : Aalto University School of science and technology www.aalto.fi/en/school/technology/

bre

- Spain : SaAS Sabaté associats Arquitectura i Sostenibilitat www.saas.cat
- United Kingdom: BRE Building Research Establishment Ltd. www.bre.co.uk

• Germany :

AGFW - German Association for Heating, Cooling, CHP www.agfw.de

- UA Universität Augsburg www.uni-augsburg.de/en
- TUM Technische Universität München http://portal.mytum.de

UNIVERSITÄT

Hungary: UD University Debrecen
 www.unideb.hu/portal/en

